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Abstract 
 

In this project, we developed optimization and sampling based inference algorithms to track and 

predict real-time traffic dynamics in a city-scale transportation network from an agent-based 

transportation model and isolated observations of the trajectories of several hundred probe 

vehicles. We demonstrated the value of combining simulation modeling and big data in delivering 

travel information to drivers and promoting efficient driving through real world road networks and 

tracking data from mobile phones.  

 

This project integrates machine learning, big data, sensor networks, and agent-based transportation 

modeling to prototype an algorithm that combines the power of a model-driven approach with the 

power of big data, and promotes responsible driving by showing how different agent trips are 

associated with different travel time and fuel consumption. 
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1 Problem – predicting transportation network dynamic 

from sparse mobile phone data 

 

With the Internet of Things, data are becoming abundant for transportation researchers, but a 

computational platform is still missing that effectively combines transportation models with noisy 

sensor network data to make people’s travel more efficient with information. In this project, we 

propose to apply the variational inference method that we developed earlier [1] to drive an agent-

based transportation simulation in conjunction with observations about the traffic dynamic in a 

road network captured by sensor networks, and to use the statistics extracted from the simulation 

runs (parking space availability, fuel economy, travel time, flow) to help drivers to plan trips with 

the best fuel and time economy through an interactive driving planner. We will prototype and 

validate this approach on UB’s North Campus. 

 

Vehicle telematics units and smart phones afford us the opportunity to sense road networks in real 

time through millions of observed vehicle locations. About 42% of newly-sold vehicles in the U.S. 

today (and a projected 80% by 2018) are able to communicate vehicle state through a telematics 

unit, and about 57% of the population are connected with the Internet through smart phones. Data 

sets that track vehicles and people are therefore increasingly available for transportation research, 

such as the vehicle-tracking records from public transportation authorities1,2, taxicab tracking from 

private taxicab companies3,4,5, call-detail records from telecommunication service providers6, and 

data from the joint efforts of government, companies, researchers, and volunteers7. Efforts have 

been made to extract an O-D matrix [2][3], to map an O-D flow to links [4][5][6][7], to visualize 

city-wide population density dynamics [8], to detect drivers' locations, trips, types of trips [9][10] 

and mode of trips (private or public vehicle) [11], and to detect poverty from trip statistics [12]. 

 

However, in order to track citywide road network dynamics directly from observed vehicle 

locations, we have to estimate traffic states at times and locations when no observed vehicles pass 

by; previous methods cannot solve this problem. According to Vlahogianni [19], the challenge in 

short-term traffic forecasting is not only to predict but also to explain phenomena at the city 

network level — to fuse new data sources such as those from telematics units and to easily 

incorporate the effects of non-recurrent conditions. A vector ARIMA model [12] and more 

generally a state space model [14] can capture the relationship between the flows on neighboring 

links; however, the assumption of continuous observations about link state is not satisfied when 

we track road network dynamics directly from the observed vehicle locations. A Bayesian network 

[15][16] can fuse heterogeneous information such as events, weather, and accidents through traffic 

cameras and vehicle tracking and so predict the formation and dissolution of traffic jams, but a 

large training data set is required in order to cover all scenarios that affect traffic-jam dynamics. 
                                                           
1 Niagara Frontiers Transportation Authority Developer Tools: http://metro.nfta.com/Contact/Developers.aspx 
2 MTA Bus Time: http://bustime.mta.info/wiki/Developers/Index 
3 NYCT&L Taxi Data: https://uofi.app.box.com/NYCtaxidata 
4 Cabspotting: http://cabspotting.org/ 
5 mPat sample data: http://cloud.siat.ac.cn/mpat/ 
6 Data for Development of Ivory Coast and Senegal: http://www.netmob.org/ 
7 Mobile Millennium: http://traffic.berkeley.edu/ 



The same is true about other non-parametric machine learning approaches, such as support vector 

regression, neural networks, and the nearest-neighbors method [17]. Multi-agent modeling [18] 

can explain phenomena at the city network level in terms of how individual drivers plan their trips, 

and can easily incorporate the effects of non-recurrent conditions; however, it is nontrivial to 

combine multi-agent models and data streams to allow short-term traffic forecasting. 

 

In this project, we prototyped a method that identifies an agent-based transportation simulator as 

a stochastic process. In this simulator, drivers take trips and links respond to traffic demands 

probabilistically — the system changes its state according to a sequence of events that identify the 

probabilistic interactions between drivers and road segments. Given a simulator identified as a 

stochastic process and the trajectories of the observed vehicles, we can search in the probability 

space of the link state (speed, flow, or capacity) trajectories and individual trips that best match 

our observations about the tracked vehicles. Starting from the number and behavior of tracked 

vehicles in a road link, we can determine the total number of vehicles in the link by scaling and 

estimating traffic conditions. If we trace the origins and destinations of the estimated number of 

vehicles through the behavior of the simulator and fill any gaps with prior individual travel 

behaviors, we can extract information about the traffic at other road links. If we then iterate 

estimations between the traffic at links and the trip choices of simulated vehicles, we improve our 

estimation of both. 

 

The challenge in making probabilistic inferences about road networks is that we have to deal with 

an exploding state space: in a simple task of tracking the binary states (free vs. jammed) of 50 

links, we must cope with 250 combinatorial states because the links interact with one another. To 

make inferences about citywide road networks from the trajectories of observed vehicles, we have 

to cope with the state trajectories of both thousands of links and a number of simulated vehicles 

that is at least 1% of the total vehicles running in the real-world system. To cope with the exploding 

state space, we use mean field approximation: the probabilistic evolution of a link state or a vehicle 

trajectory is determined according to the mean field average effect of the probability evolutions of 

the states of other links and the trajectories of other vehicles. The variational framework to make 

inferences about stochastic processes was developed in the field of machine learning as minimizing 

Bethe variational principle, expectation propagation, and loopy belief propagation [20][21]. 
 

  



2 Approach and Methodology – integrating simulation 

modeling and sparse data with approximate inference 
 

Through the proposed project, we intend to bridge the fields of agent-based modeling and machine 

learning, and enable researchers to combine the power of simulation modeling with the power of 

big data to help people. The key realization behind the proposed work is that an agent-based 

transportation simulator generates different sample paths with different probabilities — it therefore 

defines a stochastic process with a probability measure assigned to the space of the sample paths 

that describe the interactions between vehicles and roads. In this stochastic process, the system 

state as a function of time is composed of the states of the simulated vehicles and the states of the 

links. The state of a simulated vehicle is composed of its current location and its trip plan. The 

state of a road segment is composed of the number of vehicles on this segment and whether the 

road is in a free or congested state. This stochastic process is driven by a number of events, such 

as p ∘  li →  p ∘  lj — a vehicle p leaves link/facility li and enters link/facility lj. These events 

change the world state, and happen with event rates that are functions of the current world state. 

A sample path of the stochastic process is defined by a sequence of events and the corresponding 

times when those events happened. From the sequence of events and times, we can unambiguously 

recover the system state as a function of time. An agent-based simulator thus iteratively samples 

the next event according to event rates then changes the world state according to the sampled state 

starting from the initial state, until the required amount of simulated time has passed. 

Mathematically speaking, the dynamics of a transportation network defined by a set of events p ∘
 li →  p ∘  lj is a Markov process induced by an agent-based model. 

 
Algorithm: Markov process induced by a multi-agent model 

 

Input: initial world state x(t = 0), events v = 1, … , V each happening 
with rate hk(xt, ck) = ckg(xt), and change world state xt− → xt.  

Output: a series of times when productions are triggered, the IDs 

of the triggered productions, and the corresponding states brought 

about by the triggered productions { ti, vi, x(ti): i} where 0 = t0 < t1 < ⋯ <

tn < tn+1 = T, vi ∈ {1, … , V}, x(ti
−)

vi
→  x(ti) and x(t) is the right limit and 

the time series x(t) is left continuous.  
Procedure:  

Basis set current time to t0 = 0, set the current state to x(t0), 

repeat the following step until the current time ti+1 > T.  
Induction sample the next reaction timeτ ∼  Exponential (∑ hk(x(ti), ck)k ), 

sample the next reaction vi + 1 ∼ hk/ ∑ hkk  , set current time to ti+1 =
ti + τ, and update world state x(ti + 1) according to production vi+1.  

 

Such a model defines a stochastic process. The probability for this sequence of events 

(ti, vi, x(ti): i) to happen is P (v, x) = ∏ hvi
(xt) ⋅ exp(− ∑ hvi

(xt) ⋅ (ti+1  − ti)i )i    [22]. 

 

With this stochastic process view of an agent-based simulator we can search in the probability 

space of all link responses to travel demands and all vehicle trips, and so make inferences about 



the system evolution that maximize the likelihood of our observations about the probe vehicles. 

These inferences follow a forward-backward schema. Suppose we have observed a tracked vehicle 

in state St1
 at time t1 and in state St2

 at time t2, and we want to know the probability distribution 

of the state of this vehicle St for t1 ≤  t ≤  t2. We first iteratively update the probability 

distribution of the state St for t from t1 to t2 in the forward step, according to how this vehicle 

moves and starting from St1
. We then iteratively update our previous estimation of St for t from 

t2 to t1 in the backward step, starting from vehicle state St2
. After the forward step and the 

backward step, the probability distribution of vehicle state St for t1 ≤  t ≤  t2 is conditioned on 

both its state St1
 and its state St2

. 

 

Let (Xt, Yt: t) be a discrete-time state-space model (Kalman filter and hidden Markov model) with 

hidden states Xt and observations Yt, identified by a transition probability P(Xt+1|Xt) and an 

observation model P(Yt|Xt). The forward-backward algorithm to make inferences about hidden 

states Xt from observations Yt is comprised of a forward/filtering sweep to compute the forward 

statistics α(Xt) =  P(Xt |Y1, … , YT) and a backward/smoothing sweep to estimate the one-slice 

statistics γ(Xt)  =  P(Xt|Y1, … , YT). From the forward statistics and the one-slice statistics we can 

extract the backward statistics β(Xt) = γ(Xt)/α(Xt) and the two-slice statistics ξ(Xt, Xt+1) =
α(Xt)P(Yt+1, Xt+1|Xt)β(Xt+1). 

 

The challenge with making inferences about the system dynamics of a transportation network is 

that we have to search in a formidable state space — Xt = (Xt
(1)

, Xt
(2)

, ⋯ , Xt
(M)

), where the 

superscripts 1, ⋯ , M represent the states of the links or the states of the agent vehicles. We 

therefore estimate the state distributions of links and vehicles in an amiable state space with mean 

field approximation: 

 

Minimize over ξt
(m)

(xt−1
(m)

, xt
(m)

, vt−1): 

∑ ∏ ξt
(m)

mt,xt−1,t

log
∏ ξt

(m)
m

P(xt, vt−1|xt−1)
  − ∑ ∏ γt

(m)

m

log ∏ γt
(m)

mt,xt

 

Subject to:  

∑ ξt
(m)

(xt−1
(m)

, xt
(m)

, vt−1)
xt−1

(m)
,vt−1

= γt
(m)

(xt
(m)

), 

∑ ξt
(m)

(xt−1
(m)

, xt
(m)

, vt−1)
xt

(m)
,vt−1

 = γt−1
(m)

(xt−1
(m)

), 

∑ γt
(m)

(xt
(m)

)
xt

(m) = 1. 

 

Taking the derivative of the expression involving Lagrange multipliers over 𝜉𝑡(𝑥𝑡−1, 𝑥𝑡 , 𝑣𝑡) and 

𝛾𝑡
(𝑚)

(𝑥𝑡
(𝑚)

), we see that 𝛼𝑡
(𝑚)

(𝑥𝑡
(𝑚)

) = exp (∑ 𝛼𝑡,𝑖
(𝑚)

 ⋅  1(𝑥𝑡
(𝑚)

= 𝑖)(𝑖) ) is associated with the 

marginalized forward probabilities, 𝛽𝑡
(𝑚)

(𝑥𝑡
(𝑚)

) = exp (∑ 𝛽𝑡,𝑖
(𝑚)

⋅ 1(𝑥𝑡
(𝑚)

= 𝑖)(𝑖) ) is associated 

with the marginalized backward probabilities, with 𝛾𝑡
(𝑚)

(𝑥𝑡
(𝑚)

) = 𝛼𝑡
(𝑚)

(𝑥𝑡
(𝑚)

)𝛽𝑡
(𝑚)

(𝑥𝑡
(𝑚)

). The 

dual optimization problem is to find the marginal forward statistics 𝛼𝑡
(𝑚)

(𝑥𝑡
(𝑚)

) and the marginal 



backward statistics 𝛽𝑡
(𝑚)

(𝑥𝑡
(𝑚)

) to maximize the approximate partition function, and the solution 

is the fixed point of of the two-slice statistics, where normalization constant 𝑍𝑡 = 𝑃(𝑦𝑡|𝑦1,⋯,𝑡−1): 

 

The solution to the above Bethe variational principle through Legendre-Fenchel transform is one 

in which the agent vehicles and links evolve their states marginally according to the average effects 

of the other vehicles and links [1]. As such, instead of searching the joint probability space 

involving ∏ |Xt
(m)

|m  states per time step, we search the marginal probability spaces of 

(X1
(m)

, ⋯ , XT
(m)

) each involving |Xt
(m)

| states. 

 

We also formulated the multi-agent discrete event decision process (MDEDP) to model the 

decentralized self-interested decision-making of a large population from incomplete information 

in a complex system. An MDEDP is a stochastic process defined by a series of variables: the state 

of the agents, 𝑥𝑡 = 𝑥𝑡[1], ⋯ , 𝑥𝑡[𝑀]; control variables representing the action taken by the agents, 

𝑎𝑡 = 𝑎𝑡[1], ⋯ , 𝑎𝑡[𝑀]; events 𝑣𝑡 that change agent state from 𝑥𝑡−1 to 𝑥𝑡 = 𝑥𝑡−1 + Δ𝑣𝑡
; 

observations about agent states, 𝑦𝑡 = 𝑦𝑡[1], ⋯ , 𝑦𝑡[𝑀]; the expected reward for individual agents; 

the observation model, where observations on agent states are conducted independently and are 

shared by all agents; policy, how agents stochastically set action variables; and the state transition 

model, how agent states and action variables jointly determine event rates, where the indicator 

function 𝛿𝑥𝑡+1,𝑥𝑡+Δ𝑣𝑡+1
 is 1 if the current state is 𝑥𝑡 = 𝑥𝑡−1 + Δ𝑣𝑡

  and 0 otherwise. Our goal is to 

maximize the expected future reward of all agents from the observation history {𝑦𝑡: 𝑡 = 1, … , 𝑇} 

in the MDEDP defined by the probability measure 𝑝(𝑎0:𝑇, 𝑣1:𝑇 , 𝑥0:𝑇 , 𝑦1:𝑇) through identifying 𝑎𝑇. 

 

arg max𝑎0
𝔼𝑥0:∞ ,𝑎0:∞,𝑣0:∞ |𝑦−∞:0

(∑  ∞
𝑡=0 𝛾𝑡 ∑  𝑀

𝑚=1 𝑟𝑡[𝑚])  

 𝑝(𝑎0:𝑇, 𝑣1:𝑇 , 𝑥0:𝑇 , 𝑦1:𝑇)  = ∏  𝑇−1
𝑡=0 𝑝(𝑎𝑡, 𝑥𝑡+1, 𝑦𝑡+1, 𝑣𝑡+1|𝑥𝑡 )𝑝(𝑥0)  

𝑝(𝑎𝑡, 𝑥𝑡+1, 𝑦𝑡+1, 𝑣𝑡+1|𝑥𝑡) = 𝑝(𝑎𝑡|𝑥𝑡)𝑝(𝑣𝑡+1|𝑥𝑡 , 𝑎𝑡)𝛿𝑥𝑡+1,𝑥𝑡+Δ𝑣𝑡+1
 𝑝(𝑦𝑡+1|𝑥𝑡+1)   

𝑝(𝑣𝑡+1|𝑥𝑡 , 𝑎𝑡; 𝜃) = {
1 − ∑ τ ⋅  hk(xt, at)k , vt+1 = ∅

τ ⋅  hk(xt, at), vt+1 = k
      

𝑝(𝑦𝑡|𝑥𝑡) = ∏ 𝑝(𝑦𝑡[𝑚]|𝑥𝑡[𝑚])
𝑀
𝑚=1         

𝑝(𝑎𝑡|𝑥𝑡; 𝜋) = ∏ 𝑝(𝑎𝑡[𝑚]|𝑥𝑡; 𝜋[𝑚])𝑀
𝑚=1        

𝑟[𝑚](𝑥, 𝑎) = 𝔼[ℛ[𝑚]|𝑥[𝑚], 𝑎[𝑚]]        

 

Each agent represents one vehicle. We model road traffic dynamics through a single type of event, 

𝑝𝑖 ∘ 𝑙𝑗
𝑎𝑗
→ 𝑝𝑖 ∘ 𝑙𝑘, a vehicle 𝑖 moving from link/building 𝑗 to link/building 𝑘 at rate 𝑐𝑗,𝑘 ⋅  𝑎𝑗, changing 

the location of the vehicle from 𝑋𝑡
(𝑝𝑖)

= 𝑙𝑗 to 𝑋𝑡+1
(𝑝𝑖)

= 𝑙𝑘. Here event rate is defined as the 

probability for the event to happen per unit of time, as time falls to 0. 

 

We model road traffic dynamics through a single type of event, 𝑝𝑖 ∘  𝑙𝑗 →  𝑝𝑖 ∘  𝑙𝑘, --- a vehicle i 

moving from link/building j to link/building k with rate constant 𝑐𝑙𝑗,𝑙𝑘
, changing the location of the 

vehicle from 𝑋𝑡
(𝑝𝑖)

= 𝑙𝑗 to 𝑋𝑡+1
(𝑝𝑖)

= 𝑙𝑘, changing the number of vehicles on link 𝑙𝑗 from 𝑋𝑡

(𝑙𝑗)
= 𝑥𝑡

(𝑙𝑗)
 

to 𝑋𝑡+1

(𝑙𝑗)
= 𝑥𝑡

(𝑙𝑗)
− 1, and changing the number of vehicles on link 𝑙𝑘 from 𝑋𝑡

(𝑙𝑘)
= 𝑥𝑡

(𝑙𝑘)
 to 𝑋𝑡+1

(𝑙𝑘)
=

𝑥𝑡
(𝑙𝑘)

+ 1. According to this model, a vehicle stays at link/building j for an average duration 



1/ ∑ 𝑐𝑙𝑗,𝑙𝑘𝑘  and upon exiting chooses a downstream link/building with a probability proportional 

to the rate constant 𝑐𝑙𝑗,𝑙𝑘
/ ∑ 𝑐𝑙𝑗,𝑙

𝑘′𝑘′ . 

 

We assume that the probe vehicles are chosen randomly from the system. Let 𝑥𝑡𝑡𝑙 be the total 

number of vehicles in the system and 𝑦𝑡𝑡𝑙 be the total number of observed vehicles. The probability 

of observing 𝑦𝑡

(𝑙𝑗)
 probe vehicles at location j conditioned on there being 𝑥𝑡

(𝑙𝑗)
 vehicles in total is 

𝑝 (𝑦𝑡

(𝑙𝑗)
|𝑥𝑡

(𝑙𝑗)
) = (

xt

(lj)

yt

(lj)) (
𝑥𝑡𝑡𝑙−xt

(lj)

𝑦𝑡𝑡𝑙−yt

(lj)) / (xttl
yttl

). Here we use ``n choose k" notation. When the total 

number of vehicles in the system is large, the percentage of probe vehicles at a link/building is 

roughly the same percentage of probe vehicles in the system.  

 

We define four possible events in the system: vehicle leaving a building, vehicle entering a link, 

vehicle leaving a link, and vehicle entering a building. From these four events, we can construct a 

state transition matrix to represent vehicle dynamics. 

  



3. Findings 
 

We compare the performance of the proposed particle filter algorithm against other algorithms on 

three data sets of human mobility: SynthTown, Berlin and Dakar. 

 

The SynthTown data set is comprised of a synthesized network of one home location, one work 

location, and 23 single-direction road links to characterize the trips of 2000 synthesized inhabitants 

going to work in the morning and retuning home in the afternoon. The graphical illustration is 

shown in Figure. The prediction problem is to estimate the vehicle counts at home, at work, and at 

links 1-23 in the present time, 10 minutes later, and 60 minutes later from observations of the 200 

``probe" inhabitants collected at link 1 and link 20. These 200 probe inhabitants volunteer to share 

their locations every minute. Simple as it seems, this problem requires a statistical inference 

algorithm to ̀ `understand" several concepts in order to achieve successful tracking and forecasting. 

For example, the algorithm should successively add the estimated vehicle count at link 1 to home 

and subtract the estimated vehicle count at link 20 from work. In addition, the estimated vehicle 

counts at link 21-23 should sequentially follow the estimated vehicle count at link 20 and be 

followed by the estimated vehicle count at link 1. 

 

The Berlin and Dakar data are much larger. They show the capability of the proposed algorithms 

to work with more complex dynamics and larger data sets. The Berlin data set is comprised of a 

network of 24,000 single-direction road links derived from Open Street Map and the trips of 9,000 

synthesized vehicles representing the travel behaviors of one million vehicles. The trips in the 

Berlin set were carefully validated with survey and sensor network data, and provide the ground 

truth for evaluating algorithms in a semi-realistic configuration. We aggregate the 24,000 road 

links into 1539 clusters with a walktrap algorithm to make the problem small enough for 

benchmarking. The Dakar data set is comprised of a network of 8,000 single-direction road links 

derived from Open Street Map and 12,000 real-world vehicle trips derived from the Data for 

Development call detail records. 

 

We use two metrics to evaluate the performance of our model: coefficient of determination (𝑅2) 

and mean squared error (MSE). We use 𝑅2 to evaluate the goodness of fit between a time series 

of the estimated vehicle counts at a location and the ground truth. Let 𝑓𝑡 be the estimated vehicle 

count at time t, 𝑦𝑡 the ground truth and  �̅� the average of 𝑦𝑡. We define 𝑅2 = 1 −
∑ (𝑓𝑡  −  𝑦𝑡)2

𝑡 / ∑ (𝑦𝑡  − 𝑦�̅� )2
𝑡   . A higher 𝑅2 indicates a better fit between the estimated time 

series and the ground truth, with 𝑅2 = 1 indicating a perfect fit and 𝑅2 < 0 a fit worse than using 

the average. 

 

We use MSE to measure the average squared error difference between the estimated vehicle counts 

at all locations at a time t and the ground truth. A lower MSE represents a more precise prediction. 

Let 𝑓(𝑖) be the estimated vehicle count at location i and 𝑦(𝑖) the ground truth. We define 𝑀𝑆𝐸 =
1

𝑛
∑ ((𝑦(𝑖)) − 𝑓(𝑖))

2
𝑛
(𝑖=1) . A lower MSE indicates an estimation closer to the ground truth. 

 

We apply the variational inference (VI), deep neural network (DNN), recurrent neural network 

(RNN), and extended Kalman filter (EKF) to solve the vehicle tracking and prediction problems 

on the SynthTown, Berlin, and Dakar datasets. In the following, we first inspect how those four 



models track and predict traffic dynamics at different times in a day as well as different locations 

in detail on the SynthTown data set, and then compare the summary performance statistics on all 

data sets. 

 

Figure shows how VI, DNN, RNN and EKF predict the numbers of vehicles at different locations 

of SynthTown one hour ahead of time throughout a day from observations of probe vehicles (10% 

of the total) at link 1 and link 20 only. The x-axis indicates the hours of a day, the y-axis shows 

the numbers of vehicles at different locations --- home, work and road segments marked on the 

left, and the ground truth (GT) serves as the frame of reference.  

 

All four algorithms perform well, indicating that they all get the structure in the dynamics. In fact, 

there is little uncertainty about the traffic dynamics at SynthTown if the numbers of vehicles on 

link 1 and 20 can be monitored, albeit with noise. RNN underperforms the other three algorithms 

because learning the structure of a dynamical system requires a huge training data set. VI 

estimation agrees with GT and it is better than DNN and RNN estimations, this is because VI 

explicitly leverages the problem specific structure, i.e., road topology, while DNN and RNN need 

to learn it implicitly and gradually. VI is better than EKF estimation, because VI can work with 

arbitrary probability distributions while EKF assumes Gaussianity. EKF and DNN agrees well 

with GT at locations with a lot of people (home and work), and less well at locations with a few 

people. It shows VI can adopt dynamic changes better. 

 

Figure compares the summary MSE and 𝑅2 performance statistics of the four models in vehicle 

tracking, i.e., estimating the numbers of vehicles up to now, short term prediction (10 minutes) 

and long term prediction (1 hour) on all data sets. The Dakar dataset is too large for DNN, RNN 

and EKF, which indicates the better scalability of VI. The comparison leads us to the same 

conclusions as the detailed comparison on the SynthTown data. Specifically, VI has the lowest 

MSE across different times of a day, which is followed by DNN, EKF, and RNN in order (top 

row, lower is better); VI has the highest 𝑅2 across different locations, which is followed by DNN, 

EKF, and RNN (bottom row, higher is better). First, VI outperforms RNN and DNN because it 

can explicitly leverage the problem specific structure such as road topology. Second, VI 

outperforms EKF because it can work with arbitrary probability distributions and sometimes 

Gaussian assumption is not a good approximation for the real world applications. This comparison 

also points to new development of neural network architectures that are either regularized by event-

based structures of a complex system or can learn such structures explicitly. 

  



3. Findings 
 

In this project, in order to leverage the data generated by the Internet of things and crowdsourcing 

applications, we developed a viarational inference algorithm with stochastic kinetic model 

algorithm to continuously track the dynamics of large systems. In addition, we use the stochastic 

kinetic model to represent dynamic transition probabilities and reduce their dimensionality. Large 

scale experiments show that our proposed algorithm can accurately track and predict city-scale 

traffic dynamics and outperform existing algorithms based on deep learning and kalman filter 

algorithms. 

  



References 
 
[1] W. Dong, Interpreting big data with agent-based modeling. To appear: Proceedings of 2015 

Winter Simulation Conference. 

[2] M. Nanni, R. Trasarti, B. Furletti, L. Gabrielli, P. Mede, J. Bruijn, E. Romph, and G. Bruil, 
“Mp4-a project: mobility planning for africa,” in D4d challenge@ 3rd conf. on the analysis of 
mobile phone datasets (netmob 2013), 2013.  

[3] J. Steenbruggen, M. T. Borzacchiello, P. Nijkamp, and H. Scholten, “Mobile phone data from 
gsm networks for traffic parameter and urban spatial pattern assessment: a review of 
applications and opportunities,” Geojournal, vol. 78, iss. 2, pp. 223-243, 2013.  

[4] J. L. Toole, S. Colak, F. Alhasoun, A. Evsukoff, and M. C. Gonzalez, “The path most travelled: 
mining road usage patterns from massive call data,” Arxiv preprint arxiv:1403.0636, 2014.  

[5] P. Wang, T. Hunter, A. M. Bayen, K. Schechtner, and M. C. González, “Understanding road 
usage patterns in urban areas,” Scientific reports, vol. 2, 2012.  

[6] F. Calabrese, F. C. Pereira, G. Di Lorenzo, L. Liu, and C. Ratti, “The geography of taste: 
analyzing cell-phone mobility and social events,” in Pervasive computing, Springer, 2010, pp. 
22-37.  

[7] D. Quercia, N. Lathia, F. Calabrese, G. Di Lorenzo, and J. Crowcroft, “Recommending social 
events from mobile phone location data,” in Data mining (icdm), 2010 ieee 10th international 
conference on, 2010, pp. 971-976.  

[8] S. Isaacman, R. Becker, R. Cáceres, S. Kobourov, M. Martonosi, J. Rowland, and A. 
Varshavsky, “Identifying important places in people’s lives from cellular network data,” 
in Pervasive computing, Springer, 2011, pp. 133-151.  

[9] S. Jiang, G. A. Fiore, Y. Yang, J. Ferreira Jr, E. Frazzoli, and M. C. González, “A review of 
urban computing for mobile phone traces: current methods, challenges and opportunities,” in 
Proceedings of the 2nd acm sigkdd international workshop on urban computing, 2013, p. 2.  

[10] F. Calabrese, L. Ferrari, and V. D. Blondel, “Urban sensing using mobile phone network data: 
a survey of research,” Acm computing surveys (csur), vol. 47, iss. 2, p. 25, 2014.  

[11] M. Berlingerio, F. Calabrese, G. Di Lorenzo, R. Nair, F. Pinelli, and M. L. Sbodio, “Allaboard: 
a system for exploring urban mobility and optimizing public transport using cellphone data,” 
in Machine learning and knowledge discovery in databases, Springer, 2013, pp. 663-666.  

[12] Neeti Pokhriyal, Wen Dong, and Venugopal Govindaraju. Virtual Networks and Poverty 
Analysis in Senegal. In NetMob 2015. MIT Media Lab, MA, USA, 2015 (National Statistics 
award of Data for Development challenge) 

[13] M. Ben-Akiva, M. Bierlaire, H. Koutsopoulos, and R. Mishalani, “Dynamit: a simulation-
based system for traffic prediction,” in Daccors short term forecasting workshop, the 
Netherlands, 1998.  

[14] Y. Wang, M. Papageorgiou, and A. Messmer, “Real-time freeway traffic state estimation based 
on extended kalman filter: adaptive capabilities and real data testing,” Transportation research 
part a: policy and practice, vol. 42, iss. 10, pp. 1340-1358, 2008.  

[15] E. J. Horvitz, J. Apacible, R. Sarin, and L. Liao, “Prediction, expectation, and surprise: 
methods, designs, and study of a deployed traffic forecasting service,” Arxiv preprint 
arxiv:1207.1352, 2012.  

[16] A. Krause, E. Horvitz, A. Kansal, and F. Zhao, “Toward community sensing,” in Proceedings 
of the 7th international conference on information processing in sensor networks, 2008, pp. 
481-492.  

[17] H. Yin, S_C. Wong, J. Xu, and C. Wong, “Urban traffic flow prediction using a fuzzy-neural 
approach,” Transportation research part c: emerging technologies, vol. 10, iss. 2, pp. 85-98, 
2002.  

https://www.dropbox.com/s/oojkubqnicd84fr/Wen%20Dong.pdf?dl=0
http://arxiv.org/abs/1506.03401
http://arxiv.org/abs/1506.03401


[18] MATSim development team (ed.), Matsim-t: aims, approach and implementation, ivt, eth 
zürich, zürich., 2007.  

[19] E. I. Vlahogianni, M. G. Karlaftis, and J. C. Golias, “Short-term traffic forecasting: where we 
are and where we’re going,” Transportation research part c: emerging technologies, vol. 43, 
pp. 3-19, 2014.  

[20] T. Heskes and O. Zoeter, “Expectation propagation for approximate inference in dynamic 
bayesian networks,” in Proc. of uai, 2002, pp. 216-223.  

[21] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential families, and variational 
inference,” Foundations and trends\textregistered in machine learning, vol. 1, iss. 1-2, pp. 1-
305, 2008.  

[22] D. J. Wilkinson, Stochastic modeling for systems biology, CRC press, 2011.  

[23] S. Kullback, Information theory and statistics, Courier Corporation, 1968.  

[24] L. Guo, H. Shan, and A.W. Sadek. "A novel agent-based transportation model of a university 
campus with application to quantifying the environmental cost of parking 
search." Transportation Research Part A: Policy and Practice, vol. 50, pp. 86-104, 2013. 

 


